Omega-3 docosahexaenoic acid and procyanidins inhibit cyclo-oxygenase activity and attenuate NF-κB activation through a p105/p50 regulatory mechanism in macrophage inflammation.
نویسندگان
چکیده
The inflammatory response has been implicated in the pathogenesis of many chronic diseases. Along these lines, the modulation of inflammation by consuming bioactive food compounds, such as ω-3 fatty acids or procyanidins, is a powerful tool to promote good health. In the present study, the administration of DHA (docosahexaenoic acid) and B1, B2 and C1 procyanidins, alone or in combination, prevented the inflammatory response induced by the LPS (lipopolysaccharide) endotoxin in human macrophages and brought them to the homoeostatic state. DHA and B1 were strong and selective negative regulators of cyclo-oxygenase 1 activity, with IC50 values of 13.5 μM and 8.0 μM respectively. Additionally, B2 and C1 were selective inhibitors of pro-inflammatory cyclo-oxygenase 2 activity, with IC50 values of 9.7 μM and 3.3 μM respectively. Moreover, DHA and procyanidins prevented the activation of the NF-κB (nuclear factor κB) cascade at both early and late stages with shared mechanisms. These included inhibiting IκBα (inhibitor of NF-κB α) phosphorylation, inducing the cytoplasmic retention of pro-inflammatory NF-κB proteins through p105 (NF-κB1) overexpression, favouring the nuclear translocation of the p50-p50 transcriptional repressor homodimer instead of the p50-p65 pro-inflammatory heterodimer, inhibiting binding of NF-κB DNA to κB sites and, finally, decreasing the release of NF-κB-regulated cytokines and prostaglandins. In conclusion, DHA and procyanidins are strong and selective inhibitors of cyclo-oxygenase activity and NF-κB activation through a p105/p50-dependent regulatory mechanism.
منابع مشابه
Evaluation of cytotoxicity mechanism of two cyclo-oxygenase-2 inhibitors in leukemia cell line
Introduction: Leukemia is considered one of the main causes of death, and current chemotherapeutic agents are unable to provide optimal responses due to chemo-resistance. Therefore, there is a constant need for new drugs. Cyclooxygenase- 2 (COX-2) inhibitors can be helpful by reducing the necessary dose of routine chemotherapeutic drugs. Herein, we evaluated the cytotoxicity activity as well...
متن کاملOmega-3 Polyunsaturated Fatty Acids Antagonize Macrophage Inflammation via Activation of AMPK/SIRT1 Pathway
Macrophages play a key role in obesity-induced inflammation. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) exert anti-inflammatory functions in both humans and animal models, but the exact cellular signals mediating the beneficial effects are not completely understood. We previously found that two nutrient sensors AMP-activated protei...
متن کاملNF-κB p105 is a target of IκB kinases and controls signal induction of Bcl-3–p50 complexes
The NF-κB precursor p105 has dual functions: cytoplasmic retention of attached NF-κB proteins and generation of p50 by processing. It is poorly understood whether these activities of p105 are responsive to signalling processes that are known to activate NF-κB p50–p65. We propose a model that p105 is inducibly degraded, and that its degradation liberates sequestered NF-κB subunits, including its...
متن کاملResolvin D1 stimulates efferocytosis through p50/p50-mediated suppression of tumor necrosis factor-α expression.
Phagocytosis of apoptotic neutrophils, termed efferocytosis, is essential for the resolution of inflammation as it prevents the tissues surrounding the inflamed site from being exposed to the toxic contents of lytic cells. Resolvin D1 (RvD1), endogenously generated from docosahexaenoic acid during resolution of inflammation, is known to stimulate efferocytosis. However, the molecular mechanism ...
متن کاملOmega-3 Free Fatty Acids Suppress Macrophage Inflammasome Activation by Inhibiting NF-κB Activation and Enhancing Autophagy
The omega-3 (ω3) fatty acid docosahexaenoic acid (DHA) can suppress inflammation, specifically IL-1β production through poorly understood molecular mechanisms. Here, we show that DHA reduces macrophage IL-1β production by limiting inflammasome activation. Exposure to DHA reduced IL-1β production by ligands that stimulate the NLRP3, AIM2, and NAIP5/NLRC4 inflammasomes. The inhibition required Fr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 441 2 شماره
صفحات -
تاریخ انتشار 2012